Tento objev přináší nejen významné rozšíření znalostí o mechanismu replikace DNA, ale také otevírá zcela nové možnosti v enzymatické syntéze modifikovaných nukleových kyselin pro aplikace v diagnostice a chemické biologii. Práce byla publikována v prestižním časopise Angewandte Chemie International Edition (IF = 13.7) jako „Hot article".

DNA je biologická makromolekula, která je nositelkou genetické informace. Je tvořena dvoušroubovicí dvou vláken. Při dělení buněk je DNA kopírována do dceřiných molekul při tzv. replikaci, kterou katalyzují DNA polymerasy. Při replikaci polymerasa používá obě původní vlákna DNA jako vzor (templát) a podle jejich sekvence (pořadí písmen genetické abecedy A, T, G a C) syntetizuje dceřiná vlákna zabudováním komplementárních nukleotidů (A naproti T a G naproti C). Stavebními bloky pro replikaci DNA jsou deoxyribonukleosid trifosfáty (dNTP) a během miliard let evoluce byly příslušné enzymy (polymerasy) optimalizovány na inkorporaci 4 přirozených dNTP (dATP, dTTP, dCTP a dGTP). Proto se všeobecně věřilo, že jakékoli nepřirozené uměle-modifikované dNTP musí být mnohem horšími substráty pro polymerasy než přirozené dNTP. Nový objev vědců z ÚOCHB AVČR a PřF UK tento předpoklad vyvrací.

Pro studium kompetitivní inkorporace modifikovaných dNTP v přítomnosti přirozených nukleotidů vyvinul tým Prof. Hocka novou metodu analýzy založenou na faktu, že specifické enzymy (restrikční endonukleasy) rozštěpí části DNA obsahující pouze přirozené báze (A, T, G a C), ale neštěpí sekvence obsahující umělé modifikované báze. Výsledkem systematického studia velké série modifikovaných dNTP a různých polymeras bylo překvapivé zjištění, že při poměru 1:1 se některé 7-aryl-7-deazaadeninové dNTP inkorporují výrazně efektivněji než přirozený dATP a vzniká molekula DNA, která ve svém velkém žlábku nese různé modifikace. Pro vysvětlení tohoto neobvyklého zjištění byla provedena podrobná kinetická studie těchto reakcí a teoretické výpočty vazby přirozených a modifikovaných dNTP do aktivního místa enzymu. Obě tyto metody shodně objasnily důvody pro tuto reaktivitu tím, že modifikované dNTPs obsahující aromatické substituenty se mnohem lépe váží do aktivního místa polymerasy. Enzymatická syntéza různě modifikovaných oligonukleotidů a DNA byla již dříve ve skupině Prof. Hocka i v dalších laboratořích v zahraničí vypracována pro aplikace v diagnostice (značení DNA fluorescenčními nebo redoxními značkami pro snadné „čtení" sekvence) nebo v chemické biologii (např. zavedení reaktivních skupin pro vychytávání bílkovin vážících se na DNA nebo regulaci vazby proteinů). Nové zjištění, že tato polymerasová syntéza efektivně zabudovává umělé modifikace i v přítomnosti a přebytku přirozených substrátů v budoucnu umožní provádět takové syntézy i in vivo (uvnitř buněk živých organismů).

Publikace:

Kielkowski, P.; Fanfrlík, J.; Hocek, M. "7-Aryl-7-deazaadenine 2'-Deoxyribonucleoside Triphosphates (dNTPs): Better Substrates for DNA polymerases than dATP in Competitive Incorporations" Angew. Chem. Int. Ed. 2014, 53, 7552-7555.

http://dx.doi.org/10.1002/anie.201404742

Zdroj textu a obr.: Tisková zpráva ÚOCHB AV ČR